
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP023715
TITLE: Deeply Embedded Survivability

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Proceedings of the ARO Planning Workshop on Embedded
Systems and Network Security Held in Raleigh, North Carolina on
February 22-23, 2007

To order the complete compilation report, use: ADA485570

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

[he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP023711 thru ADP023727

UNCLASSIFIED

Position Paper: Deeply Embedded Survivability

Philip Koopman, Jennifer Black, Theresa Maxino
Carnegie Mellon University

{koopman, jenm, maxino} @cmu.edu

Abstract The interface between the embedded and enterprise
sides of a deeply embedded system is usually in the form

This position paper identifies three significant of a "gateway" that provides a bidirectional transition
research challenges in support of deeply embedded between the time triggered and event triggered worlds.
system survivability: achieving dependability at the Given sufficient resources, each computing paradigm
enterprise/embedded interface gateway, finding a viable can be made to simulate the other. Event triggered
security patch approach for embedded systems, and systems can schedule events periodically to simulate
surviving run-time software faults. time triggered operation. Time triggered systems can

schedule periods so fast that they don't miss events. But,
1. Introduction those approaches only work in the fault-free case.

Deeply embedded system gateways will encounter
Deeply embedded systems consist of one or more fundamental limitations when attempting to map faults

embedded systems connected to an enterprise system or and responses in one computing paradigm into the other
to the Internet (e.g., [3]). To be survivable, such systems computing paradigm. For example, what happens when
must continue to function in the face of faults, whether event triggered messages are clumped in transit, and
accidental or malicious, and whether the faults are arrive faster than the minimum inter-arrival rate assumed
caused by design errors or unexpected operating by the time triggered side of the gateway? Queues in the
conditions. Embedded system survivability can be more gateway provide only a partial solution, and can cause
challenging than enterprise survivability because problems when the system encounters queue overflow or
embedded systems may not be able to perform frequent system instability as a result of queue lag time.
reboots, incorporate weekly patches, transfer large In the other direction, time triggered messages that
amounts of data, or be cared for by trained system contain too much value jitter can defeat whatever low
administrators. Beyond this, the different natures of pass filters are in place at the gateway and can
embedded control vs. enterprise systems present potentially flood the enterprise system with messages.
fundamental limitations to applying known techniques Leaky buckets and other throttling methods can provide
from either area to the other. [1] some relief, but are not necessarily able to do the right

thing in those cases where an event shower is
2. Fundamental limitations representative of a true emergency situation rather than a
2.1 Time triggered to event triggered interfaces fault or attack.

Despite a lack of understanding of these fundamental
A fundamental limitation to achieving deeply issues, deeply embedded system gateways are already

embedded system survivability is the inherent mismatch being deployed, sometimes in critical systems.
between time triggered and event triggered systems.

Embedded systems are often "time triggered," 2.2 Limits to the patch mentality
meaning that they perform periodic computations and
messaging in support of hard deadlines (e.g., [2]). The approach of using security patches to address
Because of the dramatically different needs of real time emergent attacks is pervasive in the desktop computing

control systems compared to desktop computing, they environment. Embedded systems have fundamentally

often use specialized network protocols such as CAN different constraints that make patching difficult.
that provide low-cost, but low-bandwidth solutions Safety critical systems must be recertified each time

optimized for very short messages (often 100 bits or critical software is updated. Doing so is usually a costly

fewer per message with network speeds on the order of and time-consuming process. Quick-turnaround security

1 Mbit/sec). patches are currently impracticable if they affect critical
Enterprise systems, in contrast, are usually code. Unfortunately, many embedded systems are

characterized as "event triggered" systems with much designed in such a way that all their code is effectively
larger, sporadic events, and typically have orders of critical (i.e., any change to the code might affect critical
magnitude more CPU power and network bandwidth, properties, so it must all be assumed to be critical).

Strategies to isolate critical from non-critical software on could offer improved cost effectiveness and reduced
the same CPU are still a subject of research. system fragility.

An additional issue with patching embedded systems
is that many of them have a zero down-time
requirement. Maintenance reboots and physical operator 4. Promising innovations and abstractions
intervention are simply unacceptable in many unattended 4.1 Safety invariants
applications.

Finally, patching approaches typically assume that the Safety invariants, which are formal expressions of
owner of a system is trustworthy. This is often not the critical system properties that must hold true, offer new
case in embedded systems. For example, it is relatively promise for increasing system survivability.
common for sports car owners to install engine Traditionally, analysis and testing are used to ensure the
controller software that circumvents pollution emission invariants are never violated. But, these techniques only
and fuel economy controls as a way to get more work for the systems that are modeled (which are
performance. usually fault-free systems). One could also check safety

invariants at run time to detect when a fault has occurred
2.3 Limits to the perfect software mentality that is severe enough to compromise system safety.

Much research in computer science is based on the Safety invariant checks could act as failure detectors that

laudable goal of creating perfect software. Industry activate recovery or safe shutdown mechanisms.

practices also employ the assumption that "perfection"
(or a close approximation thereof) can be achieved by 4.2 Graceful degradation
identifying all the "important" bugs and removing them. The term graceful degradation encompasses several

In the real world, very few application domains have meanings. The term was coined to describe modular
the time and resources to deploy low defect rate redundancy in fault tolerant computing, and later
software. Getting the highest software quality possible evolved to encompass failover strategies and functional
within time and budget is certainly important. But, diversity. More recently, the term has been used to
spending exponentially increasing resources to chase describe performability tradeoffs in Quality of Service
down the last few bugs is usually impractical. Instead, it research. The notion of providing systems that can
might make more sense to spend a small fraction of partially work rather than only be fully working or fully
available resources providing ways to survive bugs that failed is essential to achieving cost-effective
will inevitably be encountered, rather than throwing all survivability.
resources at an attempt to achieve absolute perfection.

5. Possible Milestones
3. Research challenges Survivability is an emerging research area, with the

There are several research challenges that stem from current emphasis more on understanding fundamental
the limitations just discussed. They are: problems rather than on comprehensive solutions.

Understand what goes into the embedded/ Long-term milestones should include discovering
enterprise gateway. While some combination of queues fundamental tradeoffs, impossibility results, and
and message filters can work in the fault-free case, workarounds applicable to realistic systems. Short term
mapping fault manifestations and survivability research milestones should emphasize characterizing
mechanisms across the time triggered to event triggered practical limitations and exploring techniques to offer
interface provides fundamental research challenges. near-term improvement to system builders.

Make patching of critical embedded software
viable. Patching of unattended, critical embedded 6. Acknowledgements
systems provides fundamental challenges that aren't This work had been funded by the General Motors
encountered in most desktop systems. Creating patching Collaborative Research Laboratory at Carnegie Mellon
approaches that maintain system integrity promises to be University and the Pennsylvania Infrastructure
difficult. Technology Alliance.

Increase system survivability by tolerating
inevitable software defects. Software defects are 7. References
inevitable in most fielded systems. In some cases these [1] Koopman, P., Morris, J. & Narasimhan, P.,
defects will result in security vulnerabilities. In others "Challenges in Deeply Networked System
they will result in failures to maintain critical system Survivability," NATO Advanced Research Workshop On
properties. Making software faults more survivable Security and Embedded Systems, August 2005

[2] Kopetz, H., Real-Time Systems: Design Principles
for Distributed Embedded Applications. Kluwer, 1997.

[3] Tennenhouse, D., "Proactive Computing," Comm.
ACM, 43(5): 43-50, May 2000.

Challenges In Deeply
Networked System

Survivability
Philip Koopman

February 2007

koopman@cmu.edu

http://www.ece.cmu.edu/-koopman

EN NERNElectrical &Computer ne ol

*~ENGINEERINGCangeMln

Overview

" Brief introduction to the world of embedded control
- To a first approximation, desktop CPUs are 0% of the market

" High Level look at two issues
" Embedded / Internet Gateways

" An example threat: household thermostats

2

My Experience in
Embedded Systems

How Many CPUs In A Car Seat?

* Car seat photo from
Convergence 2004
* Automotive electronics show

24

" Low speed LIN

" This is a distributed

MiroprbakocesoiUitSae
Al tLuesball mapprkeswrlwd

350 Conro butto interface

__ 30,00 ___ ___ ___ ___ ___ V___

>3 50,000

o 00,000__ __

5)0,000-

1905,2099 99 19 20

4-bit Wi

15 Million PCs per month in 2004 (15,000 on this graph)

3

Trend: External Connectivity

* Safety critical subsystems will be connected to external
networks (directly or indirectly)
" German proposal:

wireless networks control car's max. speed

" E-enabled aircraft architecture (next slide)

[Airbus 2004] A-380 scheduled to enter service in 2006

7

(oIII Ne tw rk I t erconne li

M I/

UH (1 % III I

hilfornmatioIi Entelrtailimelt

Wargo & Chas, 2003, proposed Airbus A-380 architecture
Passenger laptops are 3 Firewalls away from flight controls!

4

Deeply Embedded System Gateway

Enterprise system + Embedded System =
"Deeply Embedded System"

Embedded system

VehHow Do We MakeA
Rmbb2st, Secure-

ANGteway?

PEIDCGTWYs RANSA CTIONS

Embedded system Enterprise system
9

Research Area: Embedded/Internet Gateway

* What happens at the embedded/internet interface?

* Fault propagation across the gateway presents fundamental
challenges

Embedded
Side

Control-oriented <
Time Triggered ve

Continuous III
Real Time M o I

Periodic Messages <

Short Messages 0.
Roll-forward
Lower cost

50

System Testbed

Initial Experiment: Queue overflow
* How having a long queue can cause you to operate on stale data

Delay due to
Transactional clumping

msgs in

Clumped
mmmessages

Gateway -delivered
queue -
detail - Periodic

- msgs out

Ideal case: Queue Clumping delay leads to Two messages delivered, so a
is empty in the missed deadline for message is stuck in the queue.
steady state periodic messages Now all the messages

Need a policy for delivered to the embedded
dealing with having system are 1 period old.
no message to send.

12

6

Deeply Embedded Scary Scenario

" Consider the lowly thermostat
- Koopman, P., "Embedded System Security," IEEE Computer,

July 2004.

" Trends:

" Internet-enabled

" Connection to utility companies for grid load management

" Proliphix makes an Internet Thermostat
" (But it we're not saying that

system has these vulnerabilities!)

" Somebody else makes one
almost exactly like this,
deployed July 2005

13

Waste Energy Attack
" "I'm coming home" function

" Ability to tell thermostat to warm up/cool down house if you come
home early from work, or return from a trip

" Save energy when you're gone; have a comfy house when you
return

" Implement via web interface or SMS gateway

" Attack: send a false "coming home" message
" Causes increase in utility bill for house owner
" If a widespread attack, causes increased US energy usage/cause

grid failure
" Easily countered(?) - if designers think to do it!

Note that playback attack is possible - more than just encryption of an
unchanging message is required!

14

7

Discomfort Attack

" Remotely activated energy saver function
" Remotely activated energy reduction to avoid grid overload

" Tell house "I'll be home late"
" Saves energy / prevents grid overload when house empty

" Attack: send a false "energy saver" command
" Will designers think of this one?
" Some utilities broadcast energy saver commands via radio

- In some cases, air conditioning is completely disabled
- Is it secure??

" Consequences higher for individual than for waste energy attack
- Possibly broken pipes from freezing in winter
- Possibly injured/dead pets from overheating in summer

15

Energy Auction Scenario

" What if power company optimizes energy use?
" Slightly adjust duty cycles to smooth load (pre-cool/pre-heat in

anticipation of hotest/coldest daily temperatures)

" Offer everyone the chance to save money if they volunteer for
slight cutbacks during peak times of day

" Avoid brownouts by implementing heat/cool duty cycle limits for
everyone

" You could even do real time energy auctions
" Set thermostat by "dollars per day" instead of by temperature

- More dollars gives more comfort

" Power company adjusts energy cost continuously throughout day
" Thermostats manage house as a thermal reservoir

16

8

Energy Auction Attacks - Naive Version

* What if someone broke into all the thermostats?
" Set dollar per day value to maximum, ignoring user settings

- Surprise! Next utility bill will be unpleasant

" Turn on all thermostats to maximum
- Could overload power grid

" Pulse all thermostats in a synchronized way
- Could synchronized transients destabilize the power grid?

17

Energy Auction Attacks - Scary Version

* What if someone broke into the energy auction server?

" If you set energy cost to nearly-free, everyone turns on at once to
grab the cheap power

" Guess what - enterprise computer could have indirect control of
thousands of embedded systems!

" Someday soon, almost "everything" will be "embedded," at least
indirectly

18

"Unique" Embedded System Requirements

Embedded systems:

" Are actually supposed to work
" Do you want to perform a workaround for your water heater?

" Often have 24x7 requirements - zero down time

" Often are safety critical
- Have you ever ridden in a fully automated train/peoplemover?

(or an elevator?)

" Are very cost sensitive & resource constrained

- A $0.50 CPU can't run a "big" OS with full security features

" Don't have a sysadmin

" Who's the sysadmin for your DVD player?
" The owner is often negligent, or even a malicious attacker

19

10

